ON ARBITRARY SEQUENCES OF ISOMORPHISMS IN $R^m \rightarrow R^m$

BY

CHARLES C. PUGH(1)

ABSTRACT. In this paper a new, clean proof of an algebraic theorem needed in ordinary differential equations is presented. The theorem involves the existence and uniqueness of a "complete splitting" for some subsequence of an arbitrary sequence of isomorphisms of Euclidean m-space. In the positive-definite case, a complete splitting is a limit condition on eigenspaces and eigenvalues.

1. Introduction. One of the hardest parts of the C¹ closing lemma [2] is the proof of the algebraic "subsequence and decomposition theorem". As remarked there, it is hard because vector techniques are used in place of subspace techniques. In this paper, a simpler proof of the theorem is given. A uniqueness theorem, new here, is also proved. Thanks are due to G. Mostow and D. Anosov for useful conversations.

We now state the main theorems, see $\S 2$ for the definitions of the terms employed and $\S \S 5$, 6 for the proofs.

Let H be an inner product space and let $\{T_k\}$ be an arbitrary sequence of monomorphisms $R^m \to H$.

Existence theorem. There exists a subsequence $\{T_{k_n}\} \subset \{T_k\}$ having a complete splitting.

Uniqueness theorem. If $R^m = \bigoplus W^j$ is a complete splitting for $\{T_k\}$ and $R^m = \bigoplus Y^j$ then $\bigoplus Y^j$ is a complete splitting for $\{T_k\}$ iff the flags of $\bigoplus Y^j$ and $\bigoplus W^j$ are equal.

2. Definitions and notations. Let G, H be Euclidean spaces and call M(G, H) the set of all monomorphisms $G \longrightarrow H$.

Definition. For $T \in M(G, H)$, $m(T) = \min\{|Tx|: x \in G, |x| = 1\}$, $||T|| = \max\{|Tx|: x \in G, |x| = 1\}$, and bol (T) = ||T||/m(T). These numbers are called the minimum norm of T, the norm of T, and the bolicity of T.

Clearly $m(T) \neq 0$ for $T \in M(G, H)$. The bolicity measures how much T distorts the unit ball of G. The larger bol (T) is, the greater the distortion. Families

Received by the editors December 27, 1972.

AMS (MOS) subject classifications (1970). Primary 15A45.

⁽¹⁾ Partially supported by NSF grant GP 8007.

of $T \in M(G, H)$ having uniformly bounded bolicity are easy to deal with, though not precompact.

Notation. If $G = \bigoplus G^j$ then ${}^jG = \bigoplus_{i \neq j} G^i$. The symbol \bigoplus denotes the usual direct sum, \bigoplus denotes orthogonal direct sum.

Definition. The flag of $G = \bigoplus G^j$ is the ascending sequence of subspaces: $G^1, G^1 \oplus G^2, \dots, G^1 \oplus \dots \oplus G^{L-1}, G$.

Definition. If $T \in M(G, H)$ and $\bigoplus G^j = G$, the perpendicular transform of T is $\hat{T}: G \to H$ by $\hat{T} = \sum A^j$ where $A^j: G^j \to [T^{(j)}]^{\perp}$ is defined by the commutativity of

$$\int_{G^{j}}^{G} \xrightarrow{I}_{H} H$$

$$\int_{\pi^{j}}^{\pi^{j}} |T(iG)|^{\perp}$$

 π^j being the orthogonal projection.

Definition. The maps A^j are called the altitudes of T respecting $\bigoplus G^j$.

It is an open problem to investigate the algebraic properties of \hat{T} . It is clear that $\hat{T} \in M(G, H)$ but that \hat{T} is not linear.

Definition. Let $\{T_n\}$ be a sequence in M(G, H). Then $G^- \oplus G^+ = G$ is a primary splitting for $\{T_n\}$ iff the altitudes A_n^-, A_n^+ of T_n respecting $G^- \oplus G^+$ satisfy

bol
$$(A_n^-)$$
 is bounded as $n \to \infty$,
 $m(A_n^+)/\|A_n^-\| \to \infty$ as $n \to \infty$.

Definition. $_m(A^+)/\|A^-\|$ is called the hyperbolicity of T respecting $G = G^+ \oplus G^+$.

Definition. Let $\{T_n\}$ be a sequence in M(G, H). Then $\bigoplus_{j=1}^L G^j$ is a complete splitting for $\{T_n\}$ iff the altitudes A_n^j of T_n respecting $\bigoplus G^j$ satisfy

$$\begin{aligned} & \operatorname{bol}(A_n^j) \text{ is bounded} & \operatorname{as } n \to \infty, & 1 \le j \le L, \\ & \operatorname{m}(A_n^{j+1}) / \|A_n^j\| \to \infty & \operatorname{as } n \to \infty, & 1 \le j \le L - 1. \end{aligned}$$

Definition. Let F, F' be subspaces of G; let f, f' be the orthogonal projections of G onto F, F'. Then

$$\angle(F, F') = \sup\{\angle(p, f'p): p \in F - 0\}$$

where the angle (\angle) between two vectors means the *acute* angle between the lines they span in G. If one of the vectors is zero, the angle is by definition $\pi/2$.

Thus, $\angle(F, F')$ means: at most how far is F off F'.

Remark. $\angle(F, F') = \angle(F', F)$ if F and F' have the same dimension. It is

enough to show $\angle(F, F') \ge \angle(F', F)$. By Euclidean geometry we see that, for $p \in F$, $\angle(f'p, ff'p) \le \angle(p, f'p)$. We can assume f'(F) = F'. For otherwise F contains a vector perpendicular to F' so that $\angle(F, F') = \pi/2$, certainly $\ge \angle(F', F)$. Take any $p' \in F' - 0$. We know there is a (unique) $p \in F - 0$ with p' = f'p. Hence $\angle(p', fp') = \angle(f'p, ff'p)$ which by our initial observation is $\le \angle(p, f'p)$. Hence, $\angle(F', F) \le \angle(F, F')$, and so they are equal.

Notation. For any vector $x \in G$, we write $\angle(x, F)$ instead of $\angle(\text{span }(x), F)$. For trigonometric functions we shall omit the notation \angle . That is, we write $\sin(F, F')$ instead of $\sin(\angle(F, F'))$, etc.

The following lemma simplifies much algebra.

Lemma 0. Any isomorphism $T: G \rightarrow H$ factors uniquely as T = OP = P'O' where O, O' are orthogonal and P, P' are positive definite symmetric.

Proof [1]. Let
$$P = ({}^{t}TT)^{\frac{1}{2}}$$
, $P' = (T^{t}T)^{\frac{1}{2}}$.

3. Some estimates on altitudes. We need several geometric inequalities so that we can estimate the norms and bolicities of the altitudes of a monomorphism $T: G \longrightarrow H$.

Lemma 1. Suppose $G = F \oplus X$ and Y is a subspace of G with $Y \cap F = 0$. Let $\sigma: Y \longrightarrow X$ by projection along F. Then

$$\|\sigma\| \le 1/\cos(F, X^{\perp}), \quad m(\sigma) \ge \cos(Y, F^{\perp}).$$

Proof. For any $y \in Y$, y = f + x uniquely, $f \in F$, $x \in X$, and $\sigma y = x$. If |y| = 1, trigonometry shows that

$$|f| = \frac{\sin(y, x)}{\sin(f, x)}, \quad |x| = \frac{\sin(y, f)}{\sin(f, x)}$$

so that $|\sigma y| = \sin(y, f)/\sin(f, x)$. Hence $|\sigma y| \ge \sin(y, F) \ge \min\{\sin(y, F): y \in Y\}$ = $\min\{\cos(y, F^{\perp}): y \in Y\} = \cos(Y, F^{\perp})$ since the minimum of the cosine is achieved for the maximum angle. Similarly $|\sigma y| \le 1/\cos(F, X^{\perp})$. Q.E.D.

Lemma 2. Let $T: \mathbb{R}^2 \longrightarrow H$ be a monomorphism. Then

$$\frac{\sin(Tu, Tu')}{\sin(u, u')} = \frac{|\det(T)|}{|Tu| |Tu'|} = \frac{m(T)||T||}{|Tu| |Tu'|}$$

for any independent unit vectors $u, u' \in \mathbb{R}^2$.

Proof. This follows at once from the facts: $|\det(T)| = \text{area}$ of the parallelogram spanned by (Tu, Tu')/area of the parallelogram spanned by (u, u'); and $|\det(T)| = m(T)||T||$. Q.E.D.

Lemma 3. Let $G = F \oplus X$ and $T: G \to H$ be a monomorphism. Then the altitude $A: X \to (TF)^{\perp}$ satisfies

$$||A|| \le ||T||$$
, $m(A) \ge m(T) \cos(X, F^{\perp})$.

Proof. Take any $x \in X$, |x| = 1. Then $|Ax| = |Tx|\sin(Tx, TF) = |Tx|\sin(Tx, Tf)$ for some $f \in F$, |f| = 1. Call $T' = T|\operatorname{span}(x, f)$. By Lemma 2,

$$|Tx| \sin(Tx, Tf) = \frac{|Tx|_m(T')||T'|| \sin(x, f)}{|Tx| |Tf|}.$$

Since min $\sin(x, f) \ge \min\{\sin(x, F)\} = \cos(X, F^{\perp})$, this fraction is $\ge m(T')\cos(X, F^{\perp}) \ge m(T)\cos(X, F^{\perp})$ as claimed. Also max $\{\sin(x, f)\} \le 1$ so that $|Ax| \le ||T'|| \le ||T||$ as claimed. Q.E.D.

Definition. Let $G \subset H$ be a subspace and $0 \le \phi \le \pi/2$ be given. The cone of angle ϕ around G in H is

$$C_{\phi}(G; H) = \{b \in H : b = 0 \text{ or } \angle(b, G) \le \phi\}.$$

and the unit sphere in G is $SG = \{g \in G: |g| = 1\}$.

Lemma 4. Suppose P: $H \to H$ is an isomorphism, $H = E^- \oplus E^+$, $PE^{\pm} = E^{\pm}$ and $\|P^-\| \le m(P^+)$. Then for all $0 \le \phi \le \pi/2$,

(3.1) dist $(P(SE^+), P(C_{\phi}E^-)) \ge ||P^-||/2^{\frac{1}{2}}[(1/b)^2 + (bol(P^-)\tan\phi)^2]^{\frac{1}{2}}$ where $P^{\pm} = P|E^{\pm}, b = byperbolicity of P respecting <math>E^- \oplus E^+ = H$.

See Figure 1. The factor $2^{\frac{1}{2}}$ may be superfluous.

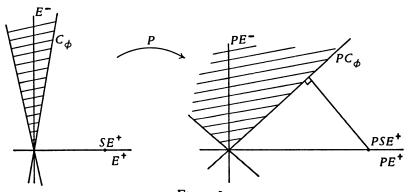


Figure 1

Proof of Lemma 4. For $\phi = \pi/2$ both sides of (3.1) vanish, so we may suppose that $0 \le \phi < \pi/2$. Choose any $g \in SE^+$ and any $c \in C_{\phi}E^-$, $c \ne 0$. Then $c = e^- + e^+$, $e^{\pm} \in E^{\pm}$, and $e^- \ne 0$ since $\phi < \pi/2$ implies $c \notin E^+$. If $e^+ = 0$

then dist $(Pg, \operatorname{span}(Pc)) = |Pg| \ge m(P^+) \ge ||P^-|| > \text{the r.h.s. of (3.1) since } m(P^+) \ge ||P^-|| \text{ implies } h \ge 1.$ Thus we may suppose that $e^+ \ne 0$ and consider $v = e^+/|e^+| \in E^+$.

Let $G = \operatorname{span}(g, v)$, $H' = e^- \oplus G$, and consider $SG \subset SE^+$, $C'_{\phi} = C_{\phi}(\operatorname{span}(e^-); H')$. It suffices to prove

It suffices to prove
(3.2)
$$\operatorname{dist}(P(SG), PC_{\phi}') \ge \mu/2^{\frac{1}{2}} [\mu^{2}/m^{2} + \tan^{2}\phi]^{\frac{1}{2}}$$
where $\mu = |Pe^{-}|/|e^{-}|$, $m = m(P|G)$. For
$$\mu/[\mu^{2}m^{-2} + \tan^{2}\phi]^{\frac{1}{2}} 2^{\frac{1}{2}} = 2^{-\frac{1}{2}} [m^{-2} + \mu^{-2}\tan^{2}\phi]^{-\frac{1}{2}}$$

$$\ge 2^{-\frac{1}{2}} [m(P^{+})^{-2} + m(P^{-})^{-2}\tan^{2}\phi]^{-\frac{1}{2}} = \text{the r.h.s. of (3.1)}.$$

The cone $C_{\phi}E^{-}$ and the sphere SE^{+} are invariant by orthogonal isomorphisms of H leaving E^{\pm} invariant. Thus it is no loss of generality to suppose $Pe^{-}=\mu e^{-}$, PG=G, and P|G is positive definite symmetric since according to Lemma 0 there is an orthogonal $O: H \longrightarrow H$ having PO(H') = H' and PO|H' positive definite symmetric.

Let e_1 , e_2 be unit eigenvectors of P|G having eigenvalues $0 < m \le M$. If $\dim(G) = 1$ then $e_1 = e_2$ and m = M. Otherwise $e_1 \perp e_2$. Call $e_3 = e^-/|e^-|$. Inscribe a square Σ in SG with edges parallel to e_1 , e_2 . Let $F_1^{\pm} = e_1 \oplus [e_3 \pm (\tan \phi)e_2]$, $F_2^{\pm} = e_2 \oplus [e_3 \pm (\tan \phi)e_1]$. These four planes are tangent to C_{ϕ}' . Their union contains a square cone Σ_{ϕ} in which C_{ϕ}' is inscribed. Thus it is clear that $\operatorname{dist}(P(SG), PC_{\phi}') \ge \operatorname{dist}(P\Sigma, P\Sigma_{\phi})$.

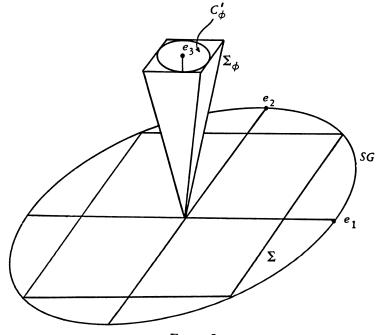


Figure 2

Take any point $s = \pm 2^{-\frac{1}{2}}e_1 + ye_2$, $y \in R$. Then dist $(Ps, P\Sigma_{\phi}) = \text{dist}(Ps, PF_{\phi}^-) = \text{dist}(Ps, PF_{\phi}^+)$ and

dist
$$(Ps, PF_2^{\dagger})$$
 = dist $(\pm Pe_1, PF_2^{\dagger})/2^{\frac{1}{2}} = |Pe_1| \sin(Pe_1, PF_2^{\dagger})/2^{\frac{1}{2}}$

 $= m\mu \cos \phi/2^{\frac{1}{2}} [\mu^2 \cos^2 \phi + m^2 \sin^2 \phi]^{\frac{1}{2}}$

which equals the r.h.s. of (3.2). Similarly, for $s = xe_1 \pm 2^{\frac{1}{2}}e_2$, $x \in R$, we have dist $(Ps, P\Sigma_{\phi}) \ge \text{dist}(Ps, PF_1^+)$ and

dist
$$(Ps, PF_1^+) = \mu/2^{1/2} [\mu^2/M^2 + \tan^2 \phi]^{1/2}$$

which is greater than or equal to the r.h.s. of (3.2) since $m \le M$. All points of Σ are of the form $\pm 2^{-\frac{1}{2}}e_1 + ye_2$ or $xe_1 \pm 2^{-\frac{1}{2}}e_2$ so this completes the proof of (3.2) and hence of (3.1). Q.E.D.

Theorem 1. Let $P: G \to H$ be a monomorphism, $G = E^- \oplus E^+ = G^- \oplus G^+$. Let $A^{\pm}: G^{\pm} \to (PG^{\mp})^{\perp}$ be the altitudes. Let b_E , b_G be the hyperbolicities of P respecting $E^- \oplus E^+$, $G^- \oplus G^+$. Suppose $PE^- \perp PE^+$, $m(P^-) = m(P)$, and $\|P^-\| \le m(P^+)$ for $P^{\pm} = P|E^{\pm}$. Then

(3.3)
$$E^{-} \subset \{x \in G: \sin(x, G^{-}) \leq bol(P^{-})/b_{G}\} = C_{\phi}(G^{-}; G)$$

for $\phi = \sin^{-1}(bol(P^-)/b_G)$. Whenever $\sigma: E^- \to G^-$ by projection along G^+ is a well defined monomorphism,

$$||A^-|Y|| < ||P^-||/\cos(g^+, E^+),$$

(3.5)
$$|A^-x| \ge m(P^+)\cos(x \oplus G^+, E^+)\cos(G^-, G^{+\perp})$$

for $Y = \sigma E^-$ and $x \in G^-$. Furthermore if $Y = G^-$ then

(3.6)
$$m(A^{+}) \geq \frac{\|P^{-}\|/\cos(G^{-}, E^{-})}{2^{\frac{1}{2}}[b_{E}^{-2} + (bol(P^{-})\tan(G^{-}, E^{-}))^{2}]^{\frac{1}{2}}}.$$

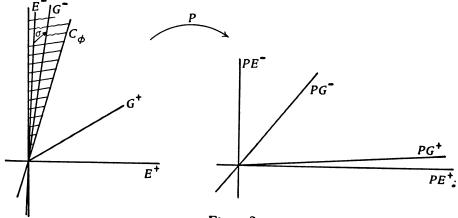


Figure 3

Proof. Take $x \in G$, |x| = 1, $x = g^- + g^+$, $g^{\pm} \in G^{\pm}$. Then $|g^{\pm}| = \sin(x, g^{\mp})/\sin(g^-, g^+)$ and $A^+g^+ = \pi^+(Pg^+) = \pi^+(Px)$, for π^+ : $H \longrightarrow (PG^-)$ by orthogonal projection. Since $\|\pi^+\| = 1$, we have

$$|Px| \ge |\pi^{+}(Px)| = |A^{+}g^{+}| \ge m(A^{+})\sin(x, g^{-})/\sin(g^{-}, g^{+})$$

$$\ge (m(A^{+})/||A^{-}||)||A^{-}||\sin(x, G^{-}) \ge h_{G^{m}}(P)\sin(x, G^{-})$$

and hence $\{x \in G: |Px|/|x|_m(P) \le K\} \subset \{x \in G: \sin(x, G^-) \le K/b_G\}$ for any constant K. Since $m(P) = m(P^-)$ and $\sup\{|Px|/|x|_m(P^-): x \in E^-\} = bol(P^-)$ this means that $E^- \subset \{x \in G: |Px|/|x|_m(P) \le bol(P^-)\} \subset \{x \in G: \sin(x, G^-) \le bol(P^-)/b_G\}$ proving (3.3).

That $\|\sigma^{-1}\| \le 1/\cos(G^+, E^+)$ is Lemma 1. For $y \in Y = \sigma E^-$, |y| = 1, $A^-y = \pi^-(P\sigma^{-1}y)$. Hence $|A^-y| \le \|\pi^-\|\|P^-\|\|\sigma^{-1}\| \le \|P^-\|/\cos(G^+, E^+)$, proving (3.4).

For $x \in G^-$, |x| = 1, Lemma 3 says that $|A^+x| \ge m(P|x \oplus G^+)\cos(x, G^{+\perp})$. For any $g \in x \oplus G^+$, $g = e^- + e^+$, $e^{\pm} \in E^{\pm}$, and so

 $|Pg| \ge |Pe^{\dagger}| \ge m(P^{\dagger}) \min \{\cos(g, E^{\dagger}): g \in x \oplus G^{\dagger}\} = m(P^{\dagger}) \cos(x \oplus G^{\dagger}, E^{\dagger})$ as claimed in (3.5).

Suppose $Y = G^-$. Let $\rho: G^+ \to E^+$ by projection along G^- . $\rho G^+ = E^+$ since $Y = G^-$. By Lemma 1, $m(\rho) \ge 1/\cos(G^-, E^-)$. For $x \in G^+$, $A^+ x = \pi^+ P x = \pi^+ P \rho x$ so that $m(A^+) \ge m(\pi^+ P^+) m(\rho)$. But

$$m(\pi^+P^+) = \text{dist}(P(SE^+), PG^-) \ge \text{dist}(P(SE^+), PC_{L(G^-, E^-)}(E^-)),$$

so Lemma 4 implies (3.6.) Q.E.D.

4. Existence and uniqueness of primary splittings in the positive definite symmetric case.

Theorem 2. Let $P_k: \mathbb{R}^m \to \mathbb{R}^m$ be positive definite symmetric, $k = 1, 2, \cdots$. Then there exists a subsequence $\{P_{k_n}\} \subset \{P_k\}$ baving a primary splitting $V^- \oplus V^+ = \mathbb{R}^m$. That is,

(4.1) (a)
$$bol(A_n^-)$$
 is uniformly bounded as $n \to \infty$,

(b)
$$m(A_n^+)/\|A_n^-\| \to \infty$$
 as $n \to \infty$,

where $A_n^{\pm}: V^{\pm} \longrightarrow (P_{k_n}V^{\mp})^{\perp}$ are the altitudes.

Proof. For each P_k there are m orthonormal eigenvectors e_k^1, \dots, e_k^m and m corresponding positive eigenvalues $\epsilon_k^1, \dots, \epsilon_k^m$ which we assume to be indexed by increasing size: $0 < \epsilon_k^1 \le \dots \le \epsilon_k^m$.

By abuse of notation we write subscripts n instead of k_n to denote a subsequence. Select a subsequence $\{P_n\}$ of $\{P_k\}$ so that the ratios $\epsilon_n^i/\epsilon_n^j$ have limits $\delta_j^i \in [0,\infty]$ as $n \to \infty$. Put

$$E_n^- = \text{span}\{e_n^j: \mathcal{E}_i^1 > 0\}, \quad E_n^+ = \text{span}\{e_n^j: \mathcal{E}_i^1 = 0\}.$$

Thus $R^m = E_n^- \oplus E_n^+$ and we can choose a subsequence (not bothering to relabel it) such that $E_n^{\pm} \to V^{\pm}$ for some splitting $R^m = V^- \oplus V^{\pm}$. This is just the compactness of the Grassmann manifolds and the continuity of the dot product.

Call $P_n^{\pm} = P_n | E_n^{\pm}$ and $B = \sup \{ \operatorname{bol}(P_n^-) \}$. B is finite by our choice of E_n^- and the fact that P_n is positive definite symmetric. Clearly $\operatorname{m}(P_n) = \operatorname{m}(P_n^-)$ and so $\operatorname{m}(A_n^-) \geq \operatorname{m}(P_n^-)$ by Lemma 3. By (3.4), $\|A_n^-\| \leq \|P_n^-\|/\cos(E_n^+, V^+)$. Hence $\operatorname{bol}(A_n^-) = \|A_n^-\|/\operatorname{m}(A_n^-) \leq \operatorname{bol}(P_n^-)/\cos(E_n^+, V^+)$ is bounded since $\operatorname{bol}(P_n^-) \leq B$ and $\cos(E_n^+, V^+) \to \cos(V^+, V^+) = 1$. This proves (4.1a).

By (3.4), (3.6), and the definition of B,

$$\frac{m(A_n^+)}{\|A_n^-\|} = \frac{m(A_n^+)}{\|P_n^-\|} \frac{\|P_n^-\|}{\|A_n^-\|} \ge \frac{\cos(E_n^+, V^+)}{[b_n^{-2} + B^2 \tan^2(E_n^-, V^-)]^{\frac{1}{2}}}$$

for b_n = the hyperbolicity of P_n respecting $E_n^- \oplus E_n^+ = R^m$. This fraction tends to $1/0 = \infty$ as $n \to \infty$ since $b_n \to \infty$ and $E_n^{\pm} \to V^{\pm}$. This proves (4.1b). Q.E.D.

Theorem 3. Let $P_k \colon R^m \to R^m$ be positive definite symmetric, $k=1,2,\cdots$. Let $G^- \oplus G^+ = R^m = W^- \oplus W^+$. Suppose that $W^- \oplus W^+$ is a primary splitting for $\{P_k\}$. Then $G^- \oplus G^+$ is a primary splitting for $\{P_k\} \Leftrightarrow G^- = W^-$.

Proof. To show "\Rightarrow" it is enough to prove that $G^-=V^-$ where V^\pm is as constructed in Theorem 2, $E_n^\pm \to V^\pm$. Let $P_n^\pm = P_n | E_n^\pm$ and let $A_n^\pm \colon G^\pm \to (P_n G^\mp)^\perp$ be the altitudes. Observe that $\operatorname{bol}(P_n^-)/b_{G_n} \to 0$ since $\operatorname{bol}(P_n^-) \le B$ and $b_{G_n}^-=$ the hyperbolicity of P_n respecting $G^- \oplus G^+$, $b_{G_n}^- \to \infty$ by assumption. Hence (3.3) implies that $\lim_{n \to \infty} (E_n^-) = V^- \subset G^-$.

If $V^- \subseteq G^-$ then $G^- \cap E_n^+ \neq 0$ because $\dim(G^-) + \dim(E_n^+) > \dim(V^-) + \dim(E_n^+) = m$. Take $g_n \in G^- \cap E_n^+$, $|g_n| = 1$, $g_n \longrightarrow g \in G^- \cap V^+$. Applying (3.5) yields

$$||A_n^-|| \ge |A_n g_n| \ge m(P_n^+) \cos(g_n \oplus G^+, E_n^+) \cos(G^-, G^{+\perp}).$$

By (3.4), $m(A_n^-) \le ||P_n^-||/\cos(G^+, E_n^+)$. Hence

$$\frac{\|A_n^-\|}{m(A_n^-)} \ge \frac{m(P_n^+)}{\|P_n^-\|} \cos(g_n \oplus G^+, E_n^+) \cos(G^-, G^{+\perp}) \cos(G^+, E_n^+).$$

The product of the three cosines tends to $\cos(g \oplus G^+, V^+)\cos(G^-, G^{+\perp})\cos(G^+, V^+)$ as $n \to \infty$. This is not zero since it is easily seen that $g \oplus G^+$ is independent of V^- , $G^- \cap G^+ = 0$, and $G^+ \cap V^- = 0$. So we have $||A_n^-||/m(A_n^-) \to \infty$ which contradicts the assumption that $\{P_k\}$ obeyed (4.1a) respecting $G^- \oplus G^+$. Hence $V^- = G^-$, completing the proof of " \Longrightarrow ".

Now suppose that $G^- = W^-$. By " \to " $W^- = V^-$ for $E_n^- \to V^-$. Again let $A_n^{\pm}: G^{\pm} \to (P_n G^{\mp})^{\perp}$ be the altitudes. By (3.4) and Lemma 3

$$\frac{\|A_n^-\|}{m(A_n^-)} \le \frac{\|P_n^-\|}{m(P_n)\cos(G^+, E_n^+)} = \frac{\|P_n^-\|}{m(P_n^-)\cos(G^+, E_n^+)} = \frac{\mathrm{bol}(P_n^-)}{\cos(G^+, E_n^+)}.$$

But $bol(P_n^-) \leq B$ and $cos(G^+, E_n^+) \rightarrow cos(G^+, V^+) \neq 0$ since $V^- \oplus V^+ = R^m = G^- \oplus G^+$ and $G^- = V^-$. Hence $\{A_n^-\}$ obeys (4.1a).

As for (4.1b), by (3.4) and (3.6) we have

$$\frac{m(A_n^+)}{\|A_n^-\|} = \frac{m(A_n^+)\|P_n^-\|}{\|P_n^-\| \|A_n^-\|} \ge \frac{\cos(G^+, E_n^+)/\cos(G^-, E_n^-)}{[b_{E_n}^{-2} + (bol(P_n^-)\tan(G^-, E_n^-))^2]^{\frac{1}{2}}}$$

where b_{E_n} = hyperbolicity of P_n respecting $E_n^- \oplus E_n^+$. But $b_{E_n} \to \infty$, bol $(P_n^-) \le B$, and $\tan^2(G^-, E_n^-) \to 0$ while $\cos(G^+, E_n^+) \to \cos(G^+, V^+) \ne 0$ and $\cos(G^-, E_n^-) \to 1$. This verifies (4.1b) for $\{A_n^{\pm}\}$. Q.E.D.

5. Existence of complete splittings.

(5.1)

Existence theorem. Let $T_k: \mathbb{R}^m \to H$ be a monomorphism, $k=1,2,\cdots$. Then there exists a subsequence $\{T_{k_n}\} \subset \{T_k\}$ having a complete splitting: $\bigoplus_{j=1}^L V^j$. That is,

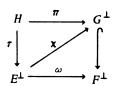
(a) bol (A_n^j) is bounded as $n \to \infty$, $1 \le j \le L$,

(b)
$$m(A_n^{j+1})/\|A_n^j\| \to \infty$$
 as $n \to \infty$, $1 \le j \le L-1$,

where $A_n^i: V^i \to [T_{k_n}^i(V)]^\perp$ are the altitudes respecting $\bigoplus_{j=1}^L V^j$ and $iV = \bigoplus_{i \neq j} V^i$.

In the proof of the above we need the following lemma

Lemma 5. If $E \oplus F = G \subseteq H$ then

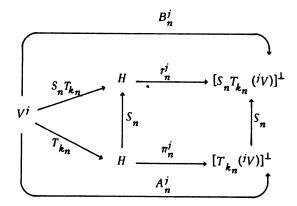


commutes, all the maps except the inclusion being orthogonal projections.

Proof. This is clear. Any $x \in H$ is x = y + e + f for some $y \in G^{\perp}$, $e \in E$, and $f \in F$. Then r(x) = y + f, $\omega(rx) = y$, $\chi(rx) = y$, while $\pi(x) = y$.

Proof of the existence theorem. We use induction on m. For m=1, the theorem is trivial since L must be 1 and $m(A_n^j) = ||A_n^j||$.

Next we observe that if $\bigoplus_{j=1}^{L} V^{j} = R^{m}$ is a complete splitting for $\{T_{k_n}\}$ then it is also one for $\{S_n T_{k_n}\}$ where $\{S_n\}$ is any sequence of orthogonal maps of H. For the altitudes of $S_n T_{k_n}$ are B_n^j where

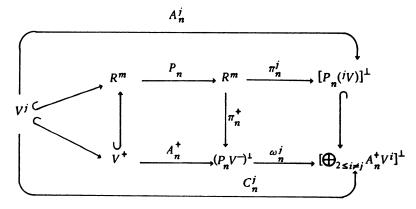


 π_n^j and τ_n^j being the orthogonal projections. This commutes because S_n is orthogonal. Thus $B_n^j = S_n A_n^j$ and so (5.1) is clear for $\{B_n^j\}$.

By Lemma 0, we may factor each T_k in the given sequence as $T_k = O_k P_k$, 1, 2, ..., where O_k is orthogonal and $P_k \colon R^m \to R^m$ is positive definite symmetric. According to the preceding paragraph, we need only prove the theorem for the arbitrary sequence $\{P_k\}$.

Again we use n instead of k_n for the subscripts of the subsequence. According to Theorem 2 there is a subsequence $\{P_n\} \subset \{P_k\}$ having a primary splitting $V^- \oplus V^+$ with altitudes $A_n^{\pm} \colon V^{\pm} \to [P_n(V^{\mp})]^{\perp}$. If $V^+ = 0$ then (4.1a) implies (5.1a) for $R^m = V^{-\frac{def}{d}}V^1$ while (5.1b) is vacuous. $V^- \neq 0$ by construction. Thus we may apply the induction hypothesis to the sequence of monomorphisms $A_n^+ \colon V^+ \to H$. This gives a subsequence (unrelabeled) of $\{A_n^+\}$ having a complete splitting $\bigoplus_{j=2}^L V^j = V^+$. Let C_n^j be the altitudes of A_n^+ respecting this splitting, $2 \leq j \leq L$.

With $V^- = V^1$, consider the splitting $R^m = \bigoplus_{j=1}^L V^j$ having the altitudes $A_n^j \colon V^j \to [P_n(jV)]^1$. Thus $A_n^1 = A_n^-$. We claim that $C_n^j = A_n^j$, $j \ge 2$. This holds because the following diagram commutes.



 $\pi_n^+, \pi_n^j, \omega_n^j$ being the orthogonal projections. That there is an inclusion for the rightmost map is true because $A_n^+V^i$ is just P_nV^i made orthogonal to P_nV^1 and so $A_n^+V^i\subset P_nV^1\oplus P_nV^i,\ i=2,\cdots,L.$ Thus $\bigoplus_{2\leq i\neq j}A_n^+V^i\subset P_n^{(i)}V$ and the reverse is true for their orthogonal complements.

That the leftmost triangle commutes is trivial. That the first square commutes is the definition of A_n^{\dagger} . That the second square commutes is Lemma 5 applied to $E = P_n V^-$, $F = \bigoplus_{2 \le i \ne j} A_n^{\dagger} V^i$, $G = E \oplus F = P_n({}^i V)$, $H = R^m$.

Thus, $C_n^j = A_n^j$, $j \ge 2$, and so (5.1) holds for $\{A_n^j\}$, $j \ge 2$, while (4.1a) implies (5.1a) for j = 1. As for (5.1b) in the case j = 1, we have

$$\frac{\|A_n^1\|}{\|A_n^2\|} = \frac{\|A_n^1\|}{m(A_n^+)} \frac{m(A_n^+)}{m(A_n^2)} \frac{m(A_n^2)}{\|A_n^2\|}.$$

The first factor tends to 0 by (4.1b). The second factor is ≤ 1 by Lemma 3. The last factor is always ≤ 1 . Hence (5.1b) is verified for j = 1, also, completing the proof of the existence theorem. Q.E.D.

6. Uniqueness of complete splittings.

Uniqueness theorem. Let $T_k \colon R^m \to H$ be a monomorphism, $k=1,2,\cdots$. Suppose that $\{T_k\}$ has the complete splitting $\bigoplus W^j = R^m$. Then $\bigoplus G^j$ is a complete splitting for $\{T_k\} \iff$ the flags of $\bigoplus G^j$ and $\bigoplus W^j$ are equal.

Again we need a lemma.

Lemma 6. If $\bigoplus G^j$ is a complete splitting of a sequence of monomorphisms $G \to H$, $\{T_n\}$, and $S: F \to G$ is an isomorphism then $\bigoplus S^{-1}G^j$ is a complete splitting of $\{T_nS\}$.

Proof. Let the altitudes of $\{T_n\}$ respecting $\bigoplus G^j$ be A_n^j and of $\{T_nS\}$ respecting $\bigoplus S^{-1}G^j$ be B_n^j . It is clear that $B_n^j = A_n^jS$. Hence $\bigoplus S^{-1}G^j$ is a complete splitting for $\{T_nS\}$. Q.E.D.

Proof of the uniqueness theorem. To make the induction easier, we also assert

(6.1)
$$m(D_n^1)/m(T_n)$$
 is bounded as $n \to \infty$

for D_n^1 = the first altitude of any complete splitting of $\{T_n\}$.

As before, the case m=1 is trivial and it is no loss of generality to replace $\{T_k\}$ with $\{P_n\}$, $P_n\colon R^m\to R^m$ being positive definite symmetric. Let $\bigoplus V^j=R^m$ be the complete splitting of (an unrelabeled subsequence of) $\{P_n\}$ as constructed in §5. Thus $V^- \oplus V^+$ is a primary splitting for $\{P_n\}$, $V^-=V^1$, $V^+=\bigoplus_{j\geq 2}V^j$. To prove " \Rightarrow " it is enough to prove flag $(\bigoplus G^j)=$ flag $(\bigoplus V^j)$.

Let $G^- = G^1$, $G^+ = \bigoplus_{j \ge 2} G^j$, and A_n^{\pm} , A_n^j , B_n^{\pm} , B_n^j the altitudes of P_n respecting $V^- \oplus V^+$, $\bigoplus V^j$, $G^- \oplus G^+$, $\bigoplus G^j$. Thus, $A_n^- = A_n^1$, $B_n^- = B_n^1$. As in

§5, the altitudes of $\{B_n^{\dagger}\}$ respecting $G^{\dagger} = \bigoplus_{j \geq 2} G^j$ are B_n^j , $j \geq 2$. This makes $\bigoplus_{j \geq 2} G^j$ a complete splitting of $\{B_n^{\dagger}\}$ and so by induction on (6.1), $m(B_n^2)/m(B_n^{\dagger})$ is bounded as $n \to \infty$. Hence

$$\frac{m(B_n^+)}{\|B_n^-\|} = \frac{m(B_n^+)}{m(B_n^2)} \frac{m(B_n^2)}{\|B_n^1\|} \to \infty \quad \text{as } n \to \infty.$$

Thus, $G^- \oplus G^+$ is a primary splitting of $\{P_n\}$ and so by Theorem 3, $G^- = V^-$, i.e. $G^1 = V^1$.

Let $\sigma: R^m \to V^+$ by orthogonal projection (i.e., projection along V^-). Since $G^- = V^-$, it is clear that $A_n^+ \sigma = B_n^+$. By Lemma 6, $\bigoplus_{j \geq 2} \sigma^{-1} V^j$ is a complete splitting of $\{A_n^+ \sigma\} = \{B_n^+\}$. By induction, flag $(\bigoplus_{j \geq 2} G^j) = \text{flag}(\bigoplus_{j \geq 2} \sigma^{-1} V^j)$ and hence flag $(\bigoplus G^j) = \text{flag}(\bigoplus V^j)$.

Now assume that $\operatorname{flag}(\bigoplus G^j) = \operatorname{flag}(\bigoplus W^j)$. By " \Longrightarrow " $\operatorname{flag}(\bigoplus W^j) = \operatorname{flag}(\bigoplus V^j)$ for $\bigoplus V^j$ as above. In particular, $V^1 = G^1$ so that $\sigma \colon G^+ \to V^+$ as in the proof of " \Longrightarrow " is well defined and $\operatorname{flag}(\bigoplus_{j \geq 2} \sigma^{-1} V^j) = \operatorname{flag}(\bigoplus_{j \geq 2} G^j)$. By Lemma 6, $\bigoplus_{j \geq 2} \sigma^{-1} V^j$ is a complete splitting of $\{A_n^+ \sigma\} = \{B_n^+\}$. By induction, $\bigoplus_{j \geq 2} G^j$ is a complete splitting of $\{B_n^+\}$. The altitudes of B_n^+ respecting $\bigoplus_{j \geq 2} G^j$ are B_n^j , $j \geq 2$, as shown above. Also as above,

(6.2)
$$m(B_n^2)/m(B_n^+)$$
 is bounded as $n \to \infty$.

Thus, (5.1a) holds for B_n^j , $j \ge 2$, and (5.1b) holds for $j \ge 2$. $V^- \oplus V^+$ is a primary splitting of $\{P_n\}$ by construction. By Theorem 3 and $G^- = V^-$, $G^- \oplus G^+$ is also a primary splitting of $\{P_n\}$. Hence (5.1a) also holds for $B_n^1 = B_n^-$ and $m(B_n^+)/\|B_n^-\| \to \infty$ as $n \to \infty$. With (6.2) this implies that

$$\frac{m(B_n^2)}{\|B_n^-\|} = \frac{m(B_n^2)}{m(B_n^+)} \frac{m(B_n^+)}{\|B_n^-\|} \to \infty \quad \text{as } n \to \infty.$$

That is, (5.1b) also holds for j = 1, which completes the proof of " \Leftarrow ".

All that remains to prove is (6.1) in dimension m. Again it is no loss of generality to replace $\{T_n\}$ with $\{P_n\}$, $P_n\colon R^m\to R^m$ being positive definite symmetric. For $m(D_n^1)/m(T_n)$ is unchanged when we multiply T_n on the left by an orthogonal isomorphism of H. So let F^j be any complete splitting of $\{P_n\}$, D_n^j : $F^j\to (P_n^{-j}F)^\perp$ the altitudes.

By the first half of the proof of this theorem, $F^1 = V^1$ where $\bigoplus_{n=1}^{\infty} V^j = R^m$ is as above. By construction of $\bigoplus_{n=1}^{\infty} V^j$, $V^1 = \lim_{n \to \infty} (E_n^-)$ where $E_n^- \bigoplus_{n=1}^{\infty} E_n^m$, $P_n E_n^ 1 P_n E_n^+$, and $m(P_n^-) = m(P_n)$ for $P_n^{\pm} = P_n | E_n^{\pm}$. Thus, Theorem 3 applies.

By (3.4),
$$||D_n^1|| \le ||P_n^-||/\cos(F^+, E_n^+)|$$
 and so

$$\frac{m(D_n^1)}{m(P_n)} \le \frac{\|D_n^1\|}{m(P_n^-)} \le \frac{1}{\cos(F^+, E_n^+)} \to \frac{1}{\cos(F^+, V^+)} < \infty$$

completing the proof of (6.1) in dimension m, also. Q.E.D.

7. An example. Let $\{P_n\}$ be a sequence of positive definite symmetric isomorphisms $R^m \to R^m$ whose eigenvalues are $0 < \epsilon_n^1 \le \cdots \le \epsilon_n^m$. Let e_n^1, \cdots, e_n^m be a corresponding orthonormal set of eigenvectors. Suppose $\mathcal{E}_j^i = \lim_n \epsilon_n^i / \epsilon_n^j$ exist, for each $i, j, \mathcal{E}_j^i \in [0, \infty]$. Because we ordered the ϵ^i by increasing size, we have: \mathcal{E}_j^i increases as i increases, \mathcal{E}_j^i decreases as j increases, $\mathcal{E}_i^i = 1$. Consequently, the finite nonzero entries of the matrix \mathcal{E}_j^i give a sequence of blocks down the diagonal. Partition the eigenvectors according to these blocks. That is, we say that ϵ_n^i is equivalent to ϵ_n^j iff \mathcal{E}_j^i is nonzero, finite. Then we look at the equivalence classes of the ϵ_n^i and the corresponding classes of the e_n^j . There are say L of them, $L \le m$. We look at the space spanned by all the e_n^j equivalent to a given one. Letting $j=1,\cdots,m$, this gives L distinct orthogonal subspaces, E_n^1,\cdots,E_n^L . Their dimensions are independent of n.

Suppose $E_n^j \to V^j$, $1 \le j \le L$. (This could be arranged by a subsequence of course.) It would be natural to expect that $\bigoplus V^j = R^m$ is a complete splitting of $\{P_n\}$. This is not true. It was really necessary to go first to $R^m = V^- \bigoplus V^+$, then to $V^+ = \bigoplus_{i=2}^L V^i$ as in the proof of the existence theorem.

In fact, consider, for positive parameters ϵ and δ , the 3 × 3 matrix

$$P = \begin{pmatrix} \delta + (1-\delta)\sin^2(\epsilon) & (1-\delta)\sin(2\epsilon)/2 & 0\\ (1-\delta)\sin(2\epsilon)/2 & \delta + (1-\delta)\cos^2(\epsilon) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

This makes $P = R_{-\epsilon}Q_{\delta}R_{\epsilon}$ where

$$Q_{\delta} = \begin{pmatrix} \delta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad R_{\epsilon} = \begin{pmatrix} \cos(\epsilon) & -\sin(\epsilon) & 0 \\ \sin(\epsilon) & \cos(\epsilon) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

 R_{ϵ} is the rotation through angle ϵ in the (x, y)-plane. The eigenspaces of P are the images by $R_{-\epsilon}$ of those of Q_{δ} . Thus they are $E^1 = R_{-\epsilon}(x\text{-axis})$, $E^2 = R_{-\epsilon}((y, z)\text{-plane})$. As $\epsilon \to 0$, $E^1 \to V^1 = x\text{-axis}$ and $E^2 \to V^2 = (y, z)\text{-plane}$.

We let ϵ and δ tend to zero. This makes E^1 and E^2 spaces of equivalent vectors under the notion of equivalence defined above. We show, however, that if $\epsilon/\delta \to \infty$ while $\epsilon, \delta \to 0$, then $A^2(z) \equiv z$ and $A^2(y) \to 0$ for z = (0, 0, 1), y = (0, 1, 0). This means that (5.1a) is violated for the splitting $R^3 = V^1 \oplus V^2$. That $A^2(z) \equiv z$ is clear.

Call x = (1, 0, 0). Then $|A^2y| = |Py|\sin(Px, Py)$. By Lemma 2 and inspection

 $(\delta \le 1)$, $\sin(Px, Py) = m(P')||P'||/|Px||Py| = \delta/|Px||Py|$, where P' = P|span(x, y). Hence

$$|A^2y| = \delta/|Px| = \delta/|(\delta + (1-\delta)\sin^2(\epsilon), (1-\delta)\sin(2\epsilon)/2)|$$

$$= |(1 + ((1-\delta)/\delta)\sin^2(\epsilon), ((1-\delta)/2\delta)\sin(2\epsilon))|^{-1}$$

which tends to zero as ϵ , $\delta \to 0$ and $\epsilon/\delta \to \infty$. The correct splitting is (x-axis) \oplus (y-axis) \oplus (z-axis) as is easily checked.

REFERENCES

- 1. G. Mostow, Lectures on Lie groups and Lie algebras, Lecture 32, Yale University, New Haven, Conn.
 - 2. C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956-1009. MR 37 #2256.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720